
Real-Time Ray Tracing with Spherically
Projected Object Data?

Bridget Makena Winn, Reed Garmsen, Irene Humer[0000−0003−2647−4813], and
Christian Eckhardt[0000−0001−7721−2763]

California Polytechnic State University, San Luis Obispo, California
Email corresponding author: ceckhard@calpoly.edu

Abstract. As raytracing becomes feasible in regards to computational
costs for real-time applications, new challenges emerge to achieve suffi-
cient quality. To aim for an acceptable framerate, the amount of con-
secutive rays is strongly reduced to keep the workload on the GPU low,
but sophisticated approaches for denoising are required. One of the ma-
jor bottlenecks is finding the ray intersection with the geometry. In this
work, we present a fast alternative by pre-computing a spherical projec-
tion of an object and reduce the cost of intersection-testing independent
of the vertex count by projecting the object onto a circumscribed sphere.
Further on, we test our Spherical Projection Approximation (SPA) by
implementing it into a DirectX Raytracing (DXR) framework and com-
paring framerates and outcome quality for indirect light with DXR’s
native triangle intersection for various dense objects. We found, that our
approach not only hails comparable quality in representing the indirect
light, but is also significantly faster and consequently provides a raytrac-
ing alternative to achieve real-time capabilities for complex scenes.

Keywords: real-time raytracing · DiretX raytracing · intersection shaders.

1 Introduction

In modern real-time Computer Graphics, the trend to enhance render quality,
in specific light bleeding and reflections for real time applications is still on-
going. While techniques such as direct lighting, pre-computed light maps and
more sophisticated methods like ambient occlusion are still broadly standard,
other techniques that support real-time global illumination already exists, ac-
companied with certain limitations. Common examples are Voxel Cone Global
Illumination (VXGI)[1], Light Propagation Volumes (LPV)[2] and Reflective
Shadow Mapping (RSM)[3]. However, VXGI and LPV quanitize the involved
geometry, making it challenging to find a reasonable balance between quality,
memory usage and frame-time and suffer under artifacts due to the voxelization,
especially for moving objects. RSM is a post-processing technique and as such
difficult to implement off-screen light-information effectively. Raytracing[4], one

? Supported by organization x.



2 F. Author et al.

of the oldest rendering technique, was hardly considered to be used in real-time
applications due to its heavy computational workload. According to the ren-
der equation[5], respectively the Bidirectional Reflectance Distribution Function
(BRDF)[6], theoretically every primary ray (cast from the camera view) inter-
secting with geometry casts an infinite number of secondary rays, invoking even
more rays on each consecutive hit. Modern render-programs strongly reduces
the ray count leading to a noisy outcome, with a need to be post-processed with
competent denoising algorithms.

Recently, new graphic card generations (NVidia Titan V, 20XX) are de-
signed to hardware-accelerate real-time ray-tracing. Supporting that, DirectX
Raytracing (DXR)[7] is a Microsoft developed API based on DirectX 12. The
DXR shader table and state objects allow the GPU to spawn rays and shaders
in parallel [11] and its acceleration structure for efficiently finding the correct
intersection-triangle per ray even allows multi-object ray intersections [12]. Sev-
eral games implemented DXR ray-tracing into their render pipeline utilizing a
single secondary reflection ray, improving the quality of reflective surfaces. Us-
ing more than one secondary ray has still a significant impact on the real-time
capabilities. State-of-the-art ongoing research investigates effective GPU denoise
algorithms aiming to produce high quality results with just a small set of sec-
ondary rays. Further on, studies have been done to accelerate shadow compu-
tations in DXR [10]. Noteworthy, there are several other, less efficient methods
to approximate object color and position during raytracing, with and without
precomputation [13] [14].

In this work, we present a different approach to reduce the workload for real-
time raytracing with DXR. The DXR programmable interface allows the coding
of intersection-shaders, which are called to evaluate if a ray hits an object. Since
objects in modern 3D graphics consist of up to several hundreds of thousands
of triangles, a highly effective ray-triangle intersection testing as well as a fast
hierarchical data structure for finding the right triangle is intrinsic for DXR,
but still a bottleneck regarding real-time. Our approach reduces the complexity
of any object by projecting it to a circumscribed sphere. Hence, all triangle
testing per object is reduced to one ray-sphere intersection. For this publication,
we present the implementation as well as the qualitatively and quantitatively
results comparing objects of different vertex count.

2 Methodology

2.1 Testing environment

We utilized DXR to run real-time raytracing on NVidia Titan V graphics card
(10XX series) (+ model, CPU, GPU). We used the OpenGL graphics API to
generate textures on a MacBook Air 2015. Code was developed on Visual Studio
2019.



Real-Time Ray Tracing with Spherically Projected Object Data 3

2.2 Direct-X 12 Raytracing Overview

To achieve global illumination in real-time, we use DirectX Raytracing (DXR
with DirectX 12), an expert-level graphics API that takes advantage of driver
and hardware support for raytracing on the GPU.

In the DXR pipeline, we implement an additional intersection shader to
define behavior between a ray and a sphere geometric primitive. Further on, we
also implement a closest hit shader to process the hit, after DXR determined the
closest object in case a ray intersects multiple objects. When the ray intersects
a geometric primitive, DXR chooses the corresponding shader to intersect the
geometric type and uses the closest hit shader to accumulate light.

2.3 Spherical Model Projection Overview

The raytracing algorithm sends rays from a camera into the scene and shades
pixels based on ray-object intersections and several bounces. It is used recursively
to generate global illumination. During global illumination, every primary ray
that intersects an object must send secondary rays to collect global light infor-
mation. Depending on implementation, each secondary ray may invoke tertiary
rays and so on. Each ray sent into the scene may intersect objects of different
face density. Consequently, the performance depends on the number of rays, as
well as the scene objects’ vertex count. The algorithm presents challenges when
implemented in real-time. In our implementation, we are concerned only with
primary and secondary rays, as a minimum requirement to approximate global
illumination.

DXR geometry acceleration structure is driver defined and works on an
NVidia card with bounding volume hierarchy to increase computational effi-
ciency to find the correct triangle for the ray intersection. However, depending
on the complexity of the object, approaching real-time capabilities with reflec-
tion rays as well as diffuse light rays is challenging.

In our approach, we contain an object in a bounding sphere and project
its complex shape to the sphere’s surface. Consequently, we reduce every ray
intersection to one test per object, without further searching in a bounding
volume hierarchy for the specific triangle. Our implementation aims to achieve
a diffuse light quality that is compareble to traditional raytracing.

During raytracing, each primary ray may hit an object containing several
triangles. Secondary rays hit bounding spheres instead of hitting the enclosed
object. Once a ray intersects a bounding sphere, we sample precomputed spher-
ical textures to approximate the color, position, and normal of the contained
object at the hit point. We use the values from the spherical texture to approx-
imate diffuse light contributing to global illumination.

We precompute spherical textures for each object in our real-time scene. To
project a 3D object onto the surface of a sphere, we developed a program to scan
the object’s surface properties and store depth, surface normal, and non-shaded
texture color in textures. A camera follows a spherical path around the object
and outputs information to each texture. As a result, the output quality of our



4 F. Author et al.

approach depends on the complexity of the object’s shape. The projected depth
is the perpendicular distance from the sphere surface to the object, and the
depth consistently entails the point closest to the sphere surface. Consequently,
surface points behind this will be neglected, see Fig. 1.

In this work, we investigate and show the quality performance under these
constraints. The inside of e.g. doughnut-shaped objects will not be visible, al-
though its contribution to secondary rays is less prominent than the outside
surface. Thus the spherical intersection algorithm allows developers to further
divide an object into separate parts, which are represented by spheres.

Our algorithm aims to work with static as well as with animated objects.
Simple static objects may be contained in one sphere. Thus to obtain global illu-
mination with animated objects, each sub-mesh associated with an animation-
bone can be contained in its own sphere.

During raytracing, secondary rays intersect bounding spheres to approximate
contributing diffuse light. After a ray hits the bounding sphere, we perform a
subsequent collision test to determine if the ray intersects the projected object
contained in the sphere. For that, we construct a test ray n from the center of
the object Scenter, perpendicular to the incoming ray r, see Fig. 1 (a). If the
length d2 of n is less than the distance d1 from Scenter to the geometry surface
along n, we detect a hit, see Fig. 1 (b). d1 is stored in the pre-computed spherical
texture on uv-coordinates derived from n on the sphere’s surface.

As can be seen in Fig. 1 (b), rays such as r2 are incorrectly detected as miss
if only considering one perpendicular test ray n. Our solution is to increase the
number of test rays, see Fig. 1 (c): r1 trajectory through the sphere is smaller
than r2 and its minimum distance to Scenter is greater, consequently less test
rays are necessary to cover the same area or the object. Thus, the amount of
test rays is proportional to this minimum distance and yield at a value between
1 and a set maximum of 50 test rays. We use a boot object to test our algorithm
with a non-uniform shape, see Fig. 2. We use a texture emphasizing contrasting
colors for both side of the boot, in order to evaluate the quality outcome of
color bleeding. Due to our model projection, the boot tip takes up a very small
portion of the spherical texture, is a known limitation of SPA and the boot is
intentionally chosen for comparing our approach to traditional raytracing.

2.4 Spherical Texture Generation

We generate two spherical textures of a resolution of 640 × 480 with four bytes
per pixel. The first texture stores the unshaded texture color in the red, green,
and blue channel as well as scaled depth in the alpha channel. The other texture
stores the surface normals in the red, green, and blue channel and sets the alpha
channel to 1.

For each pixel of the spherical textures, we rotate the camera view around the
centered object along a spherical trajectory and render the object into a frame
buffer. The view target is set to the center of the object. The middle pixel of each
frame buffer is stored into the spherical textures with uv-coordinates depending
on the camera position relative to the object. Further on, the distance of the



Real-Time Ray Tracing with Spherically Projected Object Data 5

Fig. 1: Spherical Projection Approximation algorithm: (a) Ray r hitting the
sphere; a perpendicular test-ray n with the length d2 is constructed from the
minimum distance point on r towards the sphere center Scenter and is tested
against the stored depth information d1 to determine if a hit occurred. (b) Sev-
eral cases of hit (r3) and miss (r1, r2). Evidently, r2 should hit the boot but
hails a negative result with one perpendicular test ray. (c) Several test rays are
generated between the two enter/exit points of the secant ray towards Scenter.

middle pixel is divided by the sphere’s radius to normalize its value, suiting to
be stored as (color) byte. From the fragment shader, the non-shaded texture color
as well as the normalized distance is stored into one of the spherical textures,
while the surface normal is stored into the other one. Later on, to retrieve the
real distance, the sphere’s radius must be known.

Finally, we bind our spherical color/depth and normal textures to DXR to
run our SPA approach in real-time.

2.5 SPA Integration in DXR

In DXR, we implement two shaders: The intersection shader defines our ray-
sphere intersection and overwrites DXR’s intrinsic triangle-intersection. The
sphere closest hit shader calculates diffuse lighting after a ray-sphere intersec-
tion.

DXR allows the implementation of intersection shaders, so that rays can
intersect user-defined geometry [9]. We implement a sphere intersection shader
to define ray behavior with our bounding spheres. On a positively detected hit
with the bounding sphere, our algorithm further tests if the contained object
has been hit, see Fig. 1.

Since the depth values of the spherical texture are normalized, for each test
ray, as described in section 2.3, it’s length needs to be divided by the sphere’s
radius in order to compare it’s value with the depth value of the spherical texture.
To access the spherical textures data, we calculate the uv-coordinates based on
the test ray direction as well as through the model-matrix of the object.



6 F. Author et al.

Fig. 2: We are using a simple boot object, as it represents a simple, yet non-
spherical object as test-mesh with different vertex count: 326, 1317, 5233, 20865,
83329, 333057, and 1131713. The texture splits the boot into an orange and a
blue half.

Fig. 3: Spherical texture generation with a resolution of 640× 480: (left) texture
color of the boot object spherically scanned. (Middle) the distance from the boot
to the sphere surface is stored as alpha-value by dividing it by the sphere-radius.
(Right) Normals are scanned spherically, no tangent space is needed.

If the length of the test ray is less than or equal to the sample depth, we
consider this an object hit. Else, if all test rays miss, we consider this an object
miss.

After DXR determines which type of object primitive was intersected closest,
the corresponding closest hit shader is in charge of diffuse shading at the hit
point. Here, the non-shaded texture color as well as the surface normal is loaded
from the two spherical textures in order to shade the pixel.

3 Results and Discussion

In raytracing, primary rays are reflected by the objects and dependent on the
objects’ material yield to the reflection and to indirect light. Reflections are
usually performed with one secondary ray, while diffuse light requires collecting
colors from different directions, which is computationally expensive. To reduce
the workload on the GPU, only a small number of secondary rays is sent out
and leads to a strong noise in the outcome. To aim for high quality results, a
sophisticated denoise step needs to be performed [16]. Nevertheless, to better



Real-Time Ray Tracing with Spherically Projected Object Data 7

illustrate the outcome of our approach, we do not perform denoising, but rather
keep the result from the ray intersection.

In Fig. 4, we present shadow ray casting using DXR triangle intersection
versus SPA to demonstrate the accuracy of our approach. One has to note, we
would not recommend using SPA for shadows, since primary rays are used and
the difference in computational cost is marginal. To display the shadows, the
boot is positioned against a white wall in Fig. 4, with DXR triangle intersection
ray-casted shadow (right) compared with the SPA shadow (left). The boot is lit
from the front, and global illumination has been disabled to study the shadow
only. The SPA algorithm is able to produce shadows that show distinct sections
of the boot, including the heel underneath. The SPA shadow is also warped
towards the poles of the sphere due to the spherical approximation: The distance
projected onto the spheres’ surface is measured by a point on the sphere to the
spheres’ center, which in the case of the cylindrical shape of the upper parts of
the boot leads to an increasing steepness towards the pole. Counteraction to this
warping is part of a further investigation and entails different shapes, such as
cylinders and boxes depending on the base object.

Fig. 4: Shadow mapping by ray intersection to illustrate the effectiveness of the
SPA (left) compared to raytracing (left). The detail of the heel is clearly visible.

We created images using test ray counts of 1, 3, 5 and 10. When compared
with results yield from raytracing, our images most accurately recreate color
bleeding with test ray counts 5 and above. Our algorithm is able to reproduce
distinct colors from the boot faces. In Fig. 5 one can see a comparison between
raytracing Fig. 5 (a) and our spherical projection approximation Fig. 5 (b). The
boot is placed close to the edge between two adjunct, white walls. We are using
10 test rays with a boot being perpendicular orientated towards the left wall.
The boot texture is most prominent on both sides and the tip, where it is most
illuminated from the top-positioned light source. Consequently, indirect light will
be collected from the frontal area of the boot rather than from the back, as can
be seen in both images Fig. 5 (a) and (b) by the dark gap between the orange and
blue color areas. Notably is the overall less pronounced indirect color bleeding
in the SPA. This is due to the color-distribution on the spherical texture, see
Fig. 3, were the color-intense parts of the boot-tip are inhabiting less space as a



8 F. Author et al.

side effect of our approach. However, the color distribution pattern is noticeable
comparable. A different angle in the same setting is displayed in Fig. 5 (c) and
(d) with flipped colors on the boot, where the tip is oriented towards the edge
between the walls. Besides having a weaker color bleeding analog to the previous
image, the lack of color close to the tip for the SPA image is evident. Here, the
SPA sphere already contacts the walls surface, and is the reason for a less intense
color concentration at the boots’ tip. To further test the light distribution, we
rotated the boot in order to increase the direct illuminated surface area of the
boot for both methods and compared them in Fig. 5 (e) and (f), and Fig. 5
(g) and (h). In Fig. 5 (e) and (f), both different colored sides of the boot are
contributing to the indirect light on the wall.

Due to the spherical projection, the boot tip takes up a small portion of
the spherical output texture. As a result, our algorithm does not reproduce as
much color bleeding from the boot tip. Fig. 6 demonstrates the boot object
with raytracing (a) and (c) and SPA (b) and (d), lit from above in the Sponza
scene, taking a boot texture that yields the boot half blue and half orange. In
Fig. 6, the DXR raytracing color bleeding produces blue and orange colors on
the ground plane as well as on the surroundings. Compared with SPA Fig. 6 (b),
both methods achieves the same color bleeding distribution from the boot tip.
However, the effect from the spherical texture in SPA, storing less pixels from the
boot tip as discussed in Fig. 5 is clearly visible in the difference of color intensity.
One will also notice that the scene in Fig. 6 (b) lacks shadows from the Sponza
objects onto itself; our pipeline uses SPA for both secondary bounces and shadow
rays of the boot, while primary rays on the Sponza object are turned off. However
the pipeline could be altered to include shadows from triangle intersections. In
Fig. 6 (c) and (d), we rotated the camera to face the boot tip and rotated the
boot down by 20◦ in order to see the top of the tip from the front view. This
angle further demonstrates the color bleeding distribution and amount of color
from the boot tip for both methods, DXR triangle intersection and SPA.

We have run the SPA algorithm on identically shaped boots of differing vertex
count (326 up to 1131713 vertices), produced by the loop-subdivision surface
algorithm. Figure 7 displays the frames per second (FPS) for each boot model.
To adequately measure the FPS, we perform SPA with primary and secondary
ray intersections, and compare it with DXR ray-triangle primary and secondary
intersections.

Fig. 7 (a) displays the boot vertex count versus FPS for 8 secondary samples
per primary ray. For each SPA curve, we use different amounts of test rays,
see Fig. 1. The (green), (blue), (orange), and (grey) lines represent our SPA
algorithm with test ray density of 1, 3, 5, and 10 respectively. The yellow line
represents raytracing using DXR ray-triangle intersection. Test ray counts of 1,
3, 5, and 10 each begin at an FPS of 55.4, 49.7, 45.8, and 42.5 respectively for the
boot with 326 vertices, see Tab. 1-7. Evidently, the maximum gain in FPS for
using the SPA yields at boots with approximately 80K vertices, where we find a
FPS rate of 56 compared with DXR triangle intersection of 29 FPS. It is clearly
visible, that the DXR triangle intersection is strongly dependent on the vertex



Real-Time Ray Tracing with Spherically Projected Object Data 9

Fig. 5: Color bleeding of the boot under different angles with raytracing (left
column) vs SPA (right column) against a corner of a white wall. The light-source
is at the top of the boot.



10 F. Author et al.

Fig. 6: Comparing color bleeding of the boot in the Sponza scene: (a) and (c)
raytracing, (b) and (d) SPA. The shadow mapping for the Sponza objects SPA-
image is turned off due to using primary and secondary rays with SPA only.

count, as it decreases steadily with increasing vertex density. We anticipated
this effect due to the ray-triangle intersection pipeline, in which every ray may
intersect one of millions of triangles per object. Further increasing the vertices
leads to a dependency of the SPA as well, which is due to the vertex processing
stage becoming a dominant factor in the shader pipeline. Fig. 7 (b) displays the
vertex count and FPS for 32 recursive samples. Test ray densities of 1, 3, 5, and
10 begin at FPS of 16.8, 14.5, 13.2, and 12.2 respectively for the smallest boot.
The highest relative gain in FPS is observed again at objects with 80K vertices
comparing one step SPA with DXR ray-triangle intersection.

Fig. 7 involves all boots for Fig. 7 (c) 128 and Fig. 7 (d) 256 recursive samples
respectively. In these figures, there are some fluctuation in FPS due to a steadily
decreasing FPS rate, making it difficult to get accurate FPS results, since we
need to measure over a longer period of time. In Fig. 7 (c) we see the vertex
count and FPS for 128 recursive samples. For this many secondary samples,
we do not observe a dependency of vertex count for the SPA, since the GPU is
mostly occupied with solving ray-intersections compared with vertex processing.
All data points can be read from the Tab. 1 through 7.



Real-Time Ray Tracing with Spherically Projected Object Data 11

samples

8 32 128 256

te
st

ra
y
s

0 128.8 43.6 13.3 6.7

1 55.4 16.8 4.5 2.3

3 49.7 14.5 3.8 1.7

5 45.8 13.2 3.3 1.6

10 42.5 12.2 2.9 1.4

ray 42.1 12.3 3.3 1.6

Table 1: 326 vertices

samples

8 32 128 256

130.5 49.5 12.5 6.1

55.7 16.9 4.4 2.2

47.6 14.6 3.4 1.8

46.8 13 3.2 1.4

41.6 11.8 2.8 1.3

42.3 12.8 3.1 1.5

Table 2: 1317 vertices

samples

8 32 128 256

127 45.3 12.6 5.8

56.2 17.1 4.4 2.3

46.2 13.8 3.7 1.7

43.8 12.7 6.7 1.4

40.7 11.6 3.3 1.4

35.8 10.7 2.4 1.3

Table 2: 5233 vertices

samples

8 32 128 256

te
st

ra
y
s

0 127.2 45.8 12.4 6.2

1 56.7 17.4 4.2 2.3

3 47.8 14.2 3.6 1.7

5 44.3 13.1 3.1 1.6

10 41.3 11.9 3.2 1.5

ray 32.9 9.5 2.4 1.1

Table 1: 20865 vertices

samples

8 32 128 256

121.1 44.7 13.5 6.6

56.6 18.3 4.8 2.1

48.4 14.6 3.8 1.8

44.6 13.8 3.4 1.6

41.4 12.3 2.9 1.5

28.8 8.5 2.2 0.9

Table 2: 83329 vertices

samples

8 32 128 256

98.5 42.6 13.4 6.4

51.2 17.7 4.8 2.2

44.0 14.7 3.6 1.9

38.8 12.9 3.4 1.3

38.1 12.3 2.7 1.3

24.9 7.4 1.9 0.3

Table 2: 333057 vertices

samples

8 32 128 256

te
st

ra
y
s

0 48.6 31.1 11.7 6.3

1 38.5 15.9 4.8 2.1

3 33.6 13.3 3.7 1.8

5 32.2 12.2 3.4 1.9

10 30.2 11.3 3.2 1.7

ray 20.9 6.9 1.6 0.2

Table 7: 1331713 vertices



12 F. Author et al.

Fig. 7: Boot vertex count versus FPS for (a) 8, (b) 32, (c) 128 and (d) 256 samples
samples using different amount of test rays for SPA.

4 Conclusion and Future Work

In this work, we presented a spherical projection approximation (SPA) algo-
rithm. By spherically scanning complex objects and storing their diffuse color,
normals, and depth-to-sphere-surface in textures, and substitute the objects with
its bounding sphere for ray-collision detection, we were able to reduce all trian-
gle intersection tests per object to one sphere intersection. Further on, we tested
our algorithm compared with DXR triangle intersection raytracing for feasibility
regarding computational workload as well as quality outcome and found striking
results for both aspects. In a best case scenario for high density objects (80K+
vertices), our algorithm yields up to double the FPS rate compared with DXR.
Taking shadow mapping as a test case, SPA holds a sufficient degree of detail,
yet due to the spherical approach, objects are warped towards the sphere’s poles.

Future work entails different approximation objects such as cylinders and
boxes depending on the base objects’ shape.

References

1. Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, Elmar Eisemann: Inter-
active Indirect Illumination Using Voxel Cone Tracing. Computer Graphics Forum
(Proceedings of Pacific Graphics 2011), Volume 30, Number 7 - September 2011



Real-Time Ray Tracing with Spherically Projected Object Data 13

2. Anton Kaplanyan and Carsten Dachsbacher: Cascaded light propagation volumes
for real-time indirect illumination. In Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games (I3D ’10). ACM, New York, NY,
USA, 99-107. https://doi.org/http://dx.doi.org/10.1145/1730804.1730821

3. Carsten Dachsbacher and Marc Stamminger: Reflective shadow
maps.In Proceedings of the 2005 symposium on Interactive 3D graph-
ics and games (I3D ’05). ACM, New York, NY, USA, 203-231.
https://doi.org/http://dx.doi.org/10.1145/1053427.1053460

4. Arthur Appel: Some techniques for shading machine renderings of solids.
In Proceedings of the April 30–May 2, 1968, spring joint computer
conference (AFIPS ’68 (Spring)). ACM, New York, NY, USA, 37-45.
https://doi.org/http://dx.doi.org/10.1145/1468075.1468082

5. James T. Kajiya: The rendering equation. In Proceedings of the 13th annual con-
ference on Computer graphics and interactive techniques (SIGGRAPH ’86), David
C. Evans and Russell J. Athay (Eds.). ACM, New York, NY, USA, 143-150.
https://doi.org/http://dx.doi.org/10.1145/15922.15902

6. Fred E. Nicodemus: Directional Reflectance and Emissivity of an Opaque Surface.
Appl. Opt. 4, 767-775 (1965).

7. Microsoft DirectX Raytracing https://blogs.msdn.microsoft.com/directx/

2018/03/19/announcing-microsoft-directx-raytracing/ Last accessed 15 July
2019

8. SIGGRAPH 2018 NVIDIA talk, http://intro-to-dxr.cwyman.org/

presentations/IntroDXR_RaytracingShaders.pdf Last accessed 15 July 2019
9. SIGGRAPH 2018 NVIDIA talk, https://developer.nvidia.com/rtx/

raytracing/dxr/DX12-Raytracing-tutorial-Part-2 Last accessed 15 July
2019

10. Boksansky J., Wimmer M., Bittner J. (2019) Ray Traced Shadows: Maintain-
ing Real-Time Frame Rates. In: Haines E., Akenine-Mller T. (eds) Ray Tracing
Gems. Apress, Berkeley, CA, https://link.springer.com/content/pdf/10.1007%
2F978-1-4842-4427-2_13.pdf

11. Wyman C., Marrs A. (2019) Introduction to DirectX Raytracing. In: Haines E.,
Akenine-Mller T. (eds) Ray Tracing Gems. Apress, Berkeley, CA, https://link.
springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_3.pdf

12. Gribble C. (2019) Multi-Hit Ray Tracing in DXR. In: Haines E., Akenine-Mller
T. (eds) Ray Tracing Gems. Apress, Berkeley, CA, https://link.springer.com/
content/pdf/10.1007%2F978-1-4842-4427-2_9.pdf

13. Akenine-Mller T., Nilsson J., Andersson M., Barr-Brisebois C., Toth R., Karras T.
(2019) Texture Level of Detail Strategies for Real-Time Ray Tracing. In: Haines E.,
Akenine-Mller T. (eds) Ray Tracing Gems. Apress, Berkeley, CA, https://link.
springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_20.pdf

14. SzirmayKalos, L. , Aszdi, B. , Laznyi, I. and Premecz, M. (2005), Approxi-
mate RayTracing on the GPU with Distance Impostors. Computer Graphics Fo-
rum, 24: 695-704. doi:10.1111/j.1467-8659.2005.0m894.x, https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1467-8659.2005.0m894.x

15. Barr-Brisebois C. et al. (2019) Hybrid Rendering for Real-Time Ray Tracing. In:
Haines E., Akenine-Mller T. (eds) Ray Tracing Gems. Apress, Berkeley, CA, https:
//link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_25.pdf

16. Liu E., Llamas I., Caada J., Kelly P. (2019) Cinematic Rendering in UE4 with
Real-Time Ray Tracing and Denoising. In: Haines E., Akenine-Mller T. (eds) Ray
Tracing Gems. Apress, Berkeley, CA, https://link.springer.com/content/pdf/
10.1007%2F978-1-4842-4427-2_19.pdf

https://doi.org/http://dx.doi.org/10.1145/1730804.1730821
https://doi.org/http://dx.doi.org/10.1145/1053427.1053460
https://doi.org/http://dx.doi.org/10.1145/1468075.1468082
https://doi.org/http://dx.doi.org/10.1145/15922.15902
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf
http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf
https://developer.nvidia.com/rtx/raytracing/dxr/DX12-Raytracing-tutorial-Part-2
https://developer.nvidia.com/rtx/raytracing/dxr/DX12-Raytracing-tutorial-Part-2
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_13.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_13.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_3.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_3.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_9.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_9.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_20.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_20.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2005.0m894.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2005.0m894.x
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_25.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_25.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_19.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4427-2_19.pdf

	Real-Time Ray Tracing with Spherically Projected Object Data

